If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+60x-15000=0
a = 1; b = 60; c = -15000;
Δ = b2-4ac
Δ = 602-4·1·(-15000)
Δ = 63600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{63600}=\sqrt{400*159}=\sqrt{400}*\sqrt{159}=20\sqrt{159}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-20\sqrt{159}}{2*1}=\frac{-60-20\sqrt{159}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+20\sqrt{159}}{2*1}=\frac{-60+20\sqrt{159}}{2} $
| 8x-4=3x-21 | | (3.7x)-7.61=8.3 | | 1-3m=-5 | | (3+x)=3(x-3)-4 | | x=-11/13 | | 11z-5=z+7 | | 9–s=2 | | 14-2x3+16=L | | -3(4-n)-5=7 | | (n-5)/6+(n+3))/7=11/21 | | 3x+(2x+5)=(2x+10)+(2x-15)=360 | | n/400=3 | | m+7m+3=19 | | 3.7x-7.61=8.3 | | x+11/2=-8 | | -1=t | | 2(x-2)=-4+32 | | 420x+69=1738 | | 9x-29=12x+31 | | 1-r-3r=-15 | | m/100=17 | | (8x−2)+(8x−2)=3x+2 | | 7=−5(n−4)−37=−5(n−4)−3 | | 18−(−f)=91 | | 11x-56=24+6x | | 5x+7-3x3=-9 | | 5x-27÷3=4 | | 9q2+48q+64=0 | | (3x+2)+(3x+2)=8x−2 | | |-1+n|=8 | | X-10=-3x+6 | | -6x+12=2(6-8x) |